Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses.

Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.

International journal of molecular sciences. 2022;(4)
Full text from:

Other resources

Abstract

The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.

Methodological quality

Publication Type : Review

Metadata